随着科学技术与电子业技术的持续不断的发展更迭,有机发光二极管如何简易并且有效的实现显示均匀、大面积发光、高亮度高分辨率发光、以及延长有机发光二极管寿命等当前亟需解决的问题,是我们未来要面对的技术挑战。今天小编给大家带来几个平日里做有源、无源oled显示驱动设计的例子,以供大家作为电子设计参考。
本例子使用Solomon公司的OLED显示驱动电路SSD1303,结合AT89C51单片机实现驱动OLED显示屏的方法。SSD1303是一款集控制器、行驱动器和列驱动器于一体的专用于OLED显示控制驱动电路。
实验中OLED结构阳极材料,采用ITO(铟锡氧化物),阴极则使用Mg与其他稳定金属合金的办法Mg:Ag做阴极,以提高器件量子效率和稳定能力,并可以在有机膜上形成稳定坚固的金属薄膜。
PM-OLED使用普通的矩阵交叉屏, OLED位于交叉排列的阳极和阴极中间,通过对阳极和阴极组合的选通,能控制每一个OLED的点亮。
SSD1303芯片主要由MCU接口、命令译码器、振荡器、显示时序发生器、电压控制与电流控制、区颜色译码器、和图形显示数据存储器(GDDRAM)、行驱动和列驱动组成。这种IC的专用OLED驱动方案使OLED显示性能最佳,降低了功耗。该器件采用TCP/TAB封装。具有驱动最大132TImes;64点阵的图形显示、提供的逻辑电源为2.4~3.5V、供给OLED屏的电源为7.0~16V、列输出的最大电流为 320A、行输入的最大电流为45mA、低电流睡眠模式小于5A、256级对比度控制,可编程帧频、具有几个MCU接口,如68/80并行总线bit显示缓冲器、可以垂直滚动、支持部分显示、工作时候的温度:-40 oC~ 85 oC。
整个系统由单片机、控制驱动电路SSD1303和OLED显示屏三部分所组成.SSD1303与单片机接口的引脚有:DO~D7为与单片机接口的数据总线,R/W(RW#)为读写选择信号,D/C为数据/命令选择信号,CS#为片选信号,低电平有效,E(RD#)为使能信号,RES#为复位信号。单片机采用ATMEL 公司生产的低功耗、高性能的AT89C51, AT89C51与SSD1303和显示屏的硬件接线的 R/W(RW#)、D/C、CS#、E(RD#)、RES#相连,P0口与SSD1303的数据总线相连。其它引脚的连线V,VSS接地等。下面通过程序来控制这些引脚,从而使OLED显示需要的汉字或图形。主程序软件流程图如图3所示。
图2 单片机AT89C51与SSD1303和显示屏的硬件接线 主程序软件流程图
本案例采用ISL97702便携式产品的DC/DC直流升压电源电路,输入电压2.3~5.5V,输出电压根据负载轻重在2~30V范围内可调;OLED显示驱动采用PT6807和PT6808构建的无源矩阵驱动方式,适用于单色小尺寸OLED的显示驱动。
只所以选择ISL97702作为电源IC,需要仔细考虑器件运行在最高效率的同时,尽可能的降低功耗并延长电池上班时间。ISL97702具有一种突发模式以及双输出电压选择功能,用以在轻载电流下保持转换器的效率和电源的节约。并且ISL97702还具有浪涌电流限制、短路保护和关机期间负载隔离等功能。ISL97702的DC/DC直流升压电源电路图,如下图所示:
OLED显示屏像素点,按行、列排成矩阵,显示图像时,按行扫描或按列扫描,无源矩阵的基本结构框图,如下所示:
其中“行”是由公共驱动器PT6807依次选通,“列”则是由列选择器PT6808根据图形要求来开通。例如,图中假如第一行只有第一个OLED导通就只有大约0.3mA,而假如第二行是所有OLLED都选通,而每一行一共有100个OLED,则其总电流大约为33mA。也就是说,其总电流是由每一行中的OLED数,就是其象素数决定。因为OLED的亮度是由其电流决定的,所以保持电流的稳定是很重要的。列驱动一般会用P沟道器件作为电流源。为保证其工作于饱和区,至少需要有2伏电压,这样其输出电流随VDS的变化将会小于1%每伏。当某一行有很多OLED导通时,它的总电流就比较大。这时在连接电极上就会有较大压降,从而使VDS降低。而这种压降又取决于显示的图形,而且是不可避免的。所以必须将电流受VDS的变化而变化的灵敏度降至最低。同时输出电流的不均匀性也受到驱动器件的不一致性的影响,这种不均匀性可以靠提高VGS工作电压和版图匹配技术来减小。
PT6807是点阵OLED图形显示系统64路行驱动器,它利用CMOS技术,提供64个移位寄存器和64路输出驱动,PT6807自己产生时钟信号用来控制PT6808列驱动器。
PT6807可以设计为主,从两种模式,为OLED驱动显示提供方便;主/从模式选择由控制脚MS来控制,在主模式下,选择MS脚为高电平,输入/输出脚DIO1,DIO2,CL2只作为输出脚来用;在从模式下,MS脚被置为低电平,输入/输出脚CL2作为输入来用,而DIO1,DIO2的状态由SHL脚来决定。
AM-OLED驱动实现方案包括模拟和数字两种。在数字驱动方案中,每一像素与一开关相连,TFT仅作模拟开关使用,灰度级产生方法有时间比率灰度和面积比率灰度,或者两者的结合。目前,模拟像素电路仍占主流,但在灰度级实现上,模拟技术与时间比率灰度和面积比率灰度理论相结合将会是将来的一个发展的新趋势。在模拟方案中,根据输入数据信号的类型不同,单元像素电路可分为电压控制型和电流控制型。
其工作原理如下:当扫描线管对存储电容CS充电,CS的电压控制驱动管T2的漏极电流;当扫描线截止,储存在CS上的电荷继续维持T2的栅极电压,T2保持导通状态,故在整个帧周期中,OLED处于恒流控制。
其中(a),(b)被分别称为恒流源结构与源极跟随结构,前者OLED处于驱动管T2的漏端,克服了OLED开启电压的变化对T2管电流的影响;后者在工艺上更容易实现。两管电路结构的不足之处在于驱动管T2阈值电压的不一致将导致逐个显示屏的亮度的不均匀,OLED的电流和数据电压呈非线性关系,不利于灰度的调节。
在控制模式下,T2和T3开启,T1和运算放大器构成第二代电流传输器,由于运算放大器的放大倍数能取得很大,T1管的阈值电压对电流的影响变得不敏感,此时,流经T1的电流:
并且T1管源极电压应低于OLED的开启电压,防止OLED开启。在保持模式下,T2和T3关断,存储电容Cs维持T1管的栅极电压,电流经T1进入OLED。其中放大器由COMS电路实现,所有同行像素可共用一个运算放大器。
仿线管存在电荷注入与时钟馈漏效应,使得OLED电流略小于控制电流;在OLED标称电流为1A,阈值电压漂移超过5V时,控制电流、OLED电流相对误差分别为-0.18%、5.2%,成功补偿了TFT的空间不均性和不稳定性。
虽然电压控制型电路具有响应速度快的特点,但由于不能准确地调节显示的灰度,难以满足显示的需求,于是人们提出电流驱动方案。电流控制型单元像素电路是以数据电流作为视频信号的。
目前,全球已经有多家公司在从事OLED驱动IC的研究,到目前为止,还没有完全商业化的AM-OLED的驱动IC。但NextSierra公司已推出了分别集成的TFT-OLED行列驱动NXS1008、NXS1009和控制芯片NXS1010,张志伟等人采用该系列芯片,通过MCS-51单片机的控制来驱动240×320×3点阵的TFT-OLED屏,实现了大信息量的动态图形显示。
由于液晶显示器件的配套驱动芯片功能比较完善,且价格低,所以将此类芯片移用于有源矩阵显示屏(AM-OLED)成为了国内外当前的研究焦点。显示驱动IC是目前TFT-OLED的薄弱环节,开发通用或者专用的驱动IC,并集成控制电路,是提高OLED在平板及显示领域竞争力的重要动力。